1. データの分析

[1-1 平均値と分散]

【例題】

下の表は、5人の生徒 A、B、C、D、E に 10 点満点のテストを 2 回行ったときの得点の結果です。 1 回目、2 回目の得点をそれぞれ x、y とするとき、x、y のデータの平均値 \overline{x} 、 \overline{y} 、分散 s_x^2 、 s_y^2 、標準偏差 s_x 、 s_y をそれぞれ求めよ。

	Α	В	С	D	E
回目(x)	7	5	6	3	9
2回目(y)	3	6	2	7	9

まずは、「分散」の定義にしたがって計算してみましょう。

[|回目]

[2回目]

[2回目]の計算が少し大変でした。分散には、次のような公式があります。

$$s^2 = \overline{x^2} - (\overline{x})^2$$

これを使って、[2回目]の分散を、もう一度計算してみましょう。

【公式の証明とまとめ】

大きさnのデータの値を x_1 , x_2 , ……, x_n とすると・・・

- ・平均値
- ・分散

・標準偏差

[1-2 変量の変換]

í.		·			. – – – .		. – `
į		Α	В	С	D	Е	į
 	回目(x)	7	5	6	3	9	-

先ほど扱った右上のデータで、平均値 $\bar{x}=6$ 、分散 $s_x^2=4$ でした。

この資料のxの値を一定の規則に基づいて変換したら、平均値や分散がどのように変わるかを調べてみましょう。

それぞれのxの値を 5 倍し、10 をたしてみます。 変換した値をyとすると変数yは、y = 5x + 10 という関数で表されます。

$$y = 5x + 10$$

・n個の変量xの平均値を \overline{x} 、分散を $s_x{}^2$ とする。

 $y=ax+b\;(a\neq 0)$ としたとき、n 個の変量 y の平均値 \overline{y} 、分散 s_y^2 は…

【例題】

次の変量xのデータについて、

702, 732, 738, 744, 750, 762, 798, 822

平均値 \bar{x} 、分散 s_x^2 をそれぞれ求めよ。。

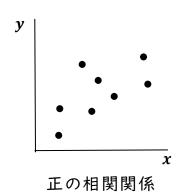
まず、計算機を使って答えを先に出しておくと・・・ $\overline{x}=756$

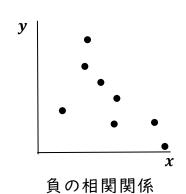
x	702	732	738	744	750	762	798	822
$x-\overline{x}$	-54	-24	-18	-12	-6	6	42	66
$(x-\overline{x})^2$	2916	576	324	144	36	36	1764	4356

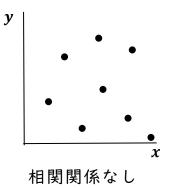
・・・これを、工夫して求めることを考えてみましょう。

[1-3 相関係数]

・相関関係



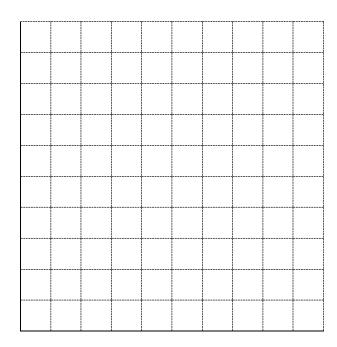




【例題】

次の表は、10 人の生徒に10 点満点のテストを2 回行ったときの得点の結果である。1 回目、2 回目の得点をそれぞれx、y とし、散布図を作成しましょう。

	Α	В	С	D	E	F	G	Н	I	J
回目(x)	2	2	6	4	3	3	5	7	4	4
2回目(y)	3	7	9	7	2	4	8	5	6	9



 $_{\Delta}$ 共分散 s_{xy} ・・・x の偏差と y の偏差の積 $(x_k - \overline{x})(y_k - \overline{y})$ の平均値

$$s_{xy} = \frac{1}{n} \left\{ (x_1 - \overline{x})(y_1 - \overline{y}) + (x_2 - \overline{x})(y_2 - \overline{y}) + \cdot \cdot \cdot \cdot + (x_n - \overline{x})(y_n - \overline{y}) \right\}$$

個)		ı	•	1	•	1	1	1	1	1	•	
N.1 \		Α	В	С	D	Е	F	G	Н	I	J	_
	l 回目 (x)	2	2	6	4	3	3	5	7	4	4	
	2回目(y)	3	7	9	7	2	4	8	5	6	9	

☆ 相関係数 r

・・・2つの変量データにおいて、その相関関係の強弱を表すもの。

x、yの標準偏差をそれぞれ s_x 、 s_y とし、共分散を s_{xy} とすると

$$r = \frac{\frac{s_{xy}}{s_x s_y}}{\frac{1}{n} \left\{ (x_1 - \overline{x})(y_1 - \overline{y}) + (x_2 - \overline{x})(y_2 - \overline{y}) + \cdots + (x_n - \overline{x})(y_n - \overline{y}) \right\}}{\sqrt{\frac{1}{n} \left\{ (x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \cdots + (x_n - \overline{x})^2 \right\} \times \frac{1}{n} \left\{ (y_1 - \overline{y})^2 + (y_2 - \overline{y})^2 + \cdots + (y_n - \overline{y})^2 \right\}}}$$

$-1 \le r \le 1$ \vec{c} \vec{b} \vec{j}

- [I] rの値がIに近いとき、強い正の相関関係
- [2] rの値が-1に近いとき、強い負の相関関係
- [3] rの値が0に近いとき、相関関係はない

_		Α	В	С	D	E	F	G	Н	I	J
	回目(x)	2	2	6	4	3	3	5	7	4	4
	2回目(y)	3	7	9	7	2	4	8	5	6	9

このデータの相関係数rを調べてみましょう。 小数第 3 位を四捨五入し、小数第 2 位まででよいです。 次のような問題を考えてみましょう。

- 問)次の相関係数に関する①~③の記述について、それぞれ正しいか正しくないかを答えなさい。
- ① 2つの変量のどちらを散布図の縦軸・横軸にするかで、相関係数の値は 変わる。
- ② もとのデータの一方の変量に定数を加えると、相関係数の値は変わる。
- ③ 一方の変量がもう一方の変量に比例するとき、相関係数は | である。
- ①、②について・・・

$$r = \frac{(x_1 - \overline{x})(y_1 - \overline{y}) + (x_2 - \overline{x})(y_2 - \overline{y}) + \cdots + (x_n - \overline{x})(y_n - \overline{y})}{\sqrt{\{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \cdots + (x_n - \overline{x})^2\}\{(y_1 - \overline{y})^2 + (y_2 - \overline{y})^2 + \cdots + (y_n - \overline{y})^2\}}}$$

③について・・・

☆ r = -1 について